

R R Institute of Technology

🗣 raja reddy Layout. Near Chikkabanavara rajlway station. Chikkabanavara. Bengaluru - 560090

An Autonomous Institution under VTU

Approved by AICTE, New Delhi & Government of Karnataka

Course Title:	Introduction to	Semester	$1^{\text{st}}/2^{\text{nd}}$
	Mechanical		
	Engineering		
Course Code:	BESCK104D /	CIE Marks	50
	204D		
Course Type	Theory	SEE Marks	50
(Theory/Practical/Integrated)	-		
		Total Marks	100
Teaching Hours/Week	2:2:0:0	Exam Hours	03
(L:T:P: S)			
Total Hours of Pedagogy	40 hours	Credits	03

Course Learning Objectives

- **CLO 1. Understand** the fundamental concepts of energy; its sources and behavior; its Conversion.
- **CLO 2. Demonstrate** the underlying concepts and methods behind IC engines & Modern mobility.
- **CLO 3.** Acquire knowledge about power transmission and joining processes.
- **CLO 4. Analyze** the conventional and advanced manufacturing processes.
- CLO 5. Discuss the need for Automation & Robotics in manufacturing.

Teaching-Learning Process

- 1) Lectures: Traditional & Innovative teaching methods are adopted so that the delivered lectures shall develop student's theoretical and practical skills.
- 2) Student- faculty interaction: Q & A session,
- 3) Power point presentation & smart board teaching: Multimedia
- 4) Activity based learning: Workshops, seminars, Assignment & Quiz
- 5) Practical Learning: Hands-on & Demonstration in the lab.

Module-1: Energy Conversion System (8 hours)

Renewable energy sources: Solar power: principle of conversion, flat plate collector, Wind energy: conversion, windmill and Hydro power: hydro power station.

Refrigeration & Air-conditioning: Principle of refrigeration, refrigerants and its properties, parts of refrigerator, terms used in refrigeration system, principle and working of vapour compression & Vapour absorption refrigerator, room air conditioner.

Self-study: Condenser, compressor, expansion valve

Applications: split & centralized air conditioning system

(RBT Levels: L2 and L3)

Module-2: Modern Mobility (08 hours)

Electric vehicles (EV) and Hybrid Electric vehicles (HEV): Basic principles of EV and HEV. Components of EV and HEV, DC DC Converter, Batteries, Charging Port, Power transmission

in EV and HEV.

Internal combustion Engines: Introduction, Classification, Engine details, Otto and Diesel four stroke cycle, Comparison of otto and diesel cycle, Indicated Power, Brake Power, Efficiencies (Elementary Numerical)

Demonstration & Study: Two stroke & Four-stroke I.C Engine

Self-study: 2-stroke petrol & Diesel engine

Applications: Automobile, Generators

(RBT Levels: L2, L3 and L4)

Module-3: Power Transmission & Joining Process (08 hours)

Power Transmission: Belt Drives - Open and cross belt-drives, pulleys and its types, velocity ratio of pulleys, creep and slip in the belts, derivation for length of belt. Gear Drives: Types of gear drives, advantages and disadvantages of gear drives over belt drives. Gear Trains- Simple & Compound Gear trains, Simple numerical.

Welding, Brazing and Soldering: Introduction of welding- Arc welding, TIG & MIG Welding Process, Brazing and Soldering - Principle, Comparison of welding, brazing and soldering.

Self-study: V-belts-applications, materials used in manufacturing, welding electrodeconsumable & non consumable

applications: Fabrication Industries,

(RBT Levels: L2, L3 and L4)

Module-4: Machine Tools (08 hours)

Lathe - Engine lathe, specification, major parts; Lathe operations: plain turning, taper turning by swiveling compound rest, facing, thread cutting, drilling, knurling. (Sketches to be used only for explaining the operations) Milling machine – upmilling & downmilling, operations-face milling & end milling

Computer Numerical Control (CNC) machines: Elements of a CNC system, salient features of CNC controls, advantages and disadvantages of CNC.

Self-study: Lathe- Types of taper turning, CNC machining- G-codes, M-codes,

Applications: Turning, cutting, taper turning, knurling

(RBT Levels: L2 and L3)

Module-5: Automation & Robotics (8 hours)

Industrial Automation: Types of automation: Fixed, programmable and flexible automation; basic elements with block diagrams; Control systems: open loop and Closed loop.

Robotics: Elements of robotic system, type of robotic joints; robotics configuration: polar, cylindrical, cartesian, SCARA & Articulate. Applications of robots- material handling, process operation and assembly & inspection, advantages and disadvantages of industrial robotics.

Self-study: AGV's & driving mechanisms, applications.

Applications: Process Industries, Automotive Industries

(RBT Levels: L2, L3 and L4)

Course Outcome

At the end of the course the student will be able to:

CO1: Discuss various energy conversions systems & their Principles.

CO2: Articulate the principle & components IC engines and Modern mobility systems

CO3: Analyze various power transmitting devices & Joining Process.

CO4: Identify suitable conventional and advanced manufacturing processes for real world applications

CO5: Examine & predict the evolution of future technologies in Automation for Manufacturing.

Course Assessment and Evaluation Details (both CIE and SEE)

Continuous Internal Evaluation	: 50 marks			
Theory Assessment Tool	Marks	Reduced marks		
IAT-1	25	25		
IAT-2	25			
Assessment -1(activity based)	25	25		
Assessment-2(activity based)	25			
Semester End Examination (SE	E) : 50 marks			
SEE	Marks	Reduced marks		
Course end examination	100	50		
(Answer any one question from				
each unit – Internal choice)				

Activity-Based Learning / Practical Based learning:

- 1. Activity: Chart preparation- operations in lathe
- 2. Modern tool usage: Use of CADEM software for CNC milling & Turning operation.
- 3. Lab Exercise: Demonstration of Turbine working principle.

4. Group Activity: Quiz & Seminar on Renewable energy sources & modern mobility (on any one topic not covered in syllabus)

Suggested Learning Resources:

Test Books (Title of the Book/Name of the author/Name of the publisher/Edition and Year)

- 1) Textbook Of Elements Of Mechanical Engineering: by Kr Gopalakrishna, Sudhir Gopalakrishna, Hn Girisha (Author), Subhas Publications / Subhas Stores (Publisher).
- 2) Elements of Mechanical Engineering. By R.K. Rajput.
- 3) K. P Roy, "Elements of Mechanical Engineering", Media Promoters & Amp; Publishing Pvt. Ltd., 7th Edition, 2014.

Reference Books

- 1) S. Trymbaka Murthy, "Text book of Elements of Mechanical Engineering", MEDTECH, Scientific International Pvt Ltd, 1st Edition, 2019.
- 2) Husain, Iqbal, "Electric and Hybrid Vehicles: Design Fundamentals", CRC Press, 3rd Edition, 2021.
- 3) Arshdeep Bahga, Vijay Madisetti, "Internet of Things a Hands-on Approach", Hyderabad Universities Press, 2020.
- 4) Dr. A. S. Ravindra, "Elements of Mechanical Engineering", Best Publications, 7th Edition, 2009.

Web links and Video Lectures (e-Resources):

- 1) Links: Refrigeration: https://youtu.be/PjcdqAkP0UA
- 2) Links: Electric Vehicle: https://www.youtube.com/watch?v=xE0d0]tXVLw
- 3) Oxyacetylene welding: https://www.youtube.com/watch?v=-SA4D098u-0.i
- 4) Links: Belt drives: https://www.youtube.com/watch?v=0mb XMGja c Gear trains: https://www.youtube.com/watch?v=tjNsUzxRjfw

COs and POs Mapping (CO-PO mappings are only Indicative)

COs	POs											
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3	2	0	0	0	2	2	1	0	0	2	2
CO2	3	2	1	0	0	2	2	1	0	0	2	2
CO3	3	2	1	0	2	2	2	0	0	0	3	2
CO4	3	2	0	0	0	2	2	1	0	0	3	2
CO5	3	2	0	0	0	2	2	1	0	0	3	2

Level 3- Highly Mapped, Level 2-Moderately Mapped, Level 0- Not Mapped

Level 1-Low Mapped,